FAO-EBRD Project “Support to Sustainable Value Chains through the Development of Geographical Indications in the Dairy Sector”

Workshop report
Tusheti and Sulguni pilots

Tbilisi

23 – 25 May 2018

Project implemented in collaboration with
Acronyms

FAO - Food and Agriculture Organization of the United Nations

EBRD - The European Bank for Reconstruction and Development

GI - Geographical Indication

INAO - Institut National de l'origine et de la Qualité - National Institute of Origin and Quality

ISO - International Organization for Standardization

PGI – Protected Geographical Indication

PDO – Protected Designation of Origin

MoA – Ministry of Agriculture

NFA – National Food Agency
The European Bank for Reconstruction and Development (EBRD) has called upon FAO’s expertise to implement a technical assistance Project in Georgia, focusing on Geographical Indications (GIs) in the dairy sector. The Project is titled “Support to Sustainable Value Chains through the Development of Geographical Indications (GIs) in the Dairy Sector” and it is being implemented in collaboration with the Georgian Ministry of Agriculture (MoA), the National Intellectual Property Centre of Georgia (Sakpatenti), as well as a local and international support institutions (like Slow Food International and Cheese guild). Groups of producers and public authorities and private sector involved in GI institutional system are the main beneficiaries of the project, which aims at i) improving the GI institutional framework, including the way GIs are evaluated, registered and protected through an efficient certification and control system, in collaboration with Georgia’s national authorities; ii) supporting the development of sustainable GI value chains through the improved specification of two pilots (Sulguni and Tushetian guda cheeses); iii) improving backward linkages between selected agribusiness and dairy farmers in order to ensure an efficient level of coordination for quality (fresh milk), reliability of supplies and fair practices; and iv) raising awareness amongst public and private stakeholders on the advantages and methods of GI schemes. The project was launched in January 2017 and since then has produced a number of outputs including study tours and technical workshops for producers and institutions.

The following report describes the proceedings and outputs of a three-one day and consultative workshop organized under the project on 23, 24 and 25 May 2018, gathering producers of Sulguni and Tushetian Guda and other stakeholders, including the National Food Authority the accreditation body and and CaucasCert, directly involved in the development of the new GI certification scheme. The workshops were organized with the technical contributions of the FAO project leader Emilie Vandecandelaere and international experts Pascal Bernardoni (REDD) and Stephanie Duchet (INAO), and with the operational and technical support of the local project implementer Elkana with participation of Stefania Manzo (FAOHQ) and Kateryna Poberezhna (FAO local team).

Objectives
The three workshops aimed at:

- discuss principles of PDO/PGI control and certification and acquaint participants (Sulguni and Tushetian producers, authorities and institutions involved in the guarantee system, see list of participants annex 1) on all the interrelated aspects of the system; (22 May)
- Present the results of the sensory analysis carried out in February 2018 for Tushetian Guda and Sulguni pilots;
- provide final revisions to the specifications of Sulguni and Tushetian Guda;
- gather inputs from the participants for the development of a draft zero control plan, in view of the simulation exercise on certification for producers and public authorities planned for July 2018.
During all three days, the different counterparts showed a cooperative approach which would prospect a fruitful public-private collaboration in this context.

TRAINING WORKSHOP on CONTROL AND CERTIFICATION, 23 MAY 2018
Elkana office, 10:00-15:30 h

The event was opened by Mariam Jorjiadze and Pascal Bernardoni presenting workshop’s objectives and agenda (in Annex 1). A total of 29 participants attended the workshop (list of participants in Annex 2), including 3 persons involved in Tushetian Guda production; 3 cheese processors; 7 representatives of NFA (which would be the control body in charge of the Tushetian Guda certification); 2 representatives of CaucasCert, in charge of the future certification controls on Sulguni, and one representative from the Georgian Dairy Association. From the FAO Georgia country office, Gia Bibileishvili attended the event.

A first presentation was delivered by Pascal Bernardoni on the objectives of the PDO/PGI certification system and control, related legal aspects, on the functions of Competent Authorities and Control Bodies and accreditation aspects. Ia Ebralidze, Elkana, provided then an overview of the international standards for certification and accreditation. In order to provide concrete example of the whole PDO/PGI certification scheme, Pascal Bernardoni also exposed the case study of Grana Padano and Comte PDOs describing their specifications, control plan, certification system and labelling. Follow-up recommendations were then provided at the closing session. The main outputs of the first day of workshop are described below.
At the beginning of the first presentation participants were asked to provide their answers to the question of why certification is needed. The answers were quite diversified and are shown as follows:

- To avoid falsification (3)
- protect product identity
- quality control (2)
- added value
- consumer’s protection (4)
- better control by the state
- competition
- transparency
- support to export (2)
- food safety (2)
- traceability
- facilitate marketing strategy
- higher standards

It was subsequently explained that a GI certification scheme provides assurance of quality and product conformity with the relative specification, before entering the commercial circuit, and may be based on a range of activities: on-site inspection of the production process, auditing of quality assurance systems, examination of finished products, etc. There is not a standardized formula on how to carry out compliance controls, and the system should adapt to local administrative and economic conditions.

During the presentations, the question of food safety risks within traditional/artisanal production was raised. Pascal Bernardoni outlined that food safety must be ensured also in small scale and traditional production systems, by adapting the food safety package to the production dimension and eventually implement ad hoc flexibility measures. Other countries experiences show that if specific rules are respected, full food safety can be achieved even in small scale/traditional production systems. To this end, more awareness and dissemination of information to producers on this is essential. It was clarified that the PDO/PGI control system does not encompass food safety related controls, but these are rather carried out in parallel by the relative competent authorities.

Regarding the system for control body accreditation and supervision, in Georgia the MoA would be in charge of supervising the Control Body, which will be accredited by the Georgian Accreditation Centre (through the current ISO standard 17065).

One of the main recommendation is that collaboration between all the involved authorities and bodies is essential, with a clear system framework under which each body involved has defined responsibilities and a proper mastery of the legal provisions within which it operates.
During the consultation workshop on Tushetian guda, the following activities were carried out:

1) Present the results of the sensory analysis performed in February 2018 for Tushetian Guda;
2) Revise with the participants some aspects of the specifications for Tushetian Guda;
3) Start the preparation of the certification system for Tushetian guda and carry out a group exercise and gather inputs from the participants for the development of a draft zero control plan, working on:
 a. Product characteristics
 b. Process of production
 c. Traceability

The event was opened by Mariam Jorjadze presenting workshop`s objectives and agenda (Annex 1). A total of 21 participant attended the workshop (see list of participants in Annex 2), including 3 persons involved in Tushetian Guda production and 8 representatives from the NFA, who will be in charge of the certification controls for Tushetian Guda as well as one representative from the National Dairy Association.

Sensory and laboratory analysis
The results of the sensory analysis for Tushetian Guda were exposed to the participants by Mariam Jorjadze. The following results and proposals were presented (see annex 3 with specifications):

Salt content. Of the five presented samples, the panel had prevalence of “slightly too salty” answers and the sample with lowest salt content at 7.8%, which is still above permitted maximum of 7% in the current registered specification, was considered as the best for the GI. The related suggestion was to consider a salt content within the range of 5-7%, providing a transitional period until 31st December 2020 during which cheeses with higher salt levels can also be accepted as GI. A second option would be based on the voluntary approach according to which current higher salt level would be accepted with the engagement of lowering salt levels to 7% and subsequently request an amendment of the specifications for lower salt rate.

Fat content. During the sensory analysis all cheeses presented were considered as GI by the majority of panelists. Besides, during the workshop presentation, looking at the laboratory results of sheep and cow-sheep milk samples, it was realized that fat content values are not consistent and realistic, being too low (from 47.2 to 48.6% for the sheep milk samples and just 33.1% in cow-sheep milk sample), probably due to the use of skimmed milk as a sample. This would require the execution of new analysis for correct reference values.
Discussion
The presentation of the sensory results served as base for discussion and revision of certain elements of the Tushetian Guda specification.

Salt content. Producers agreed to engage in improving their process to reduce salt in the final product. The discussion brought to the decision of considering a maxim salt content of 8% but to achieve these result producers need to make real experimentation\(^1\) and a transitional period of 3 years is required (in parallel, the allowance of a transitional period should be introduced in the new GI law). Producers referred that when bringing the gudas lowland (each guda containing 4-5- shapes of cheese), the brine is removed from the guda in order to reduce weight for transportation. Subsequently they need to renew the brine at least one time, with a concentration of salt in the brine of 10%. These details have been included in the revised specifications.

Fat content. Stephanie Duchet highlighted that setting a specific range is not relevant for the specification per se as this parameter constitute a minor control point and does not influence the specific quality of guda. But fix a minimum content is important, because it could be a way to authorize not to label nutrition data on the cheese, as it is the case in France, as allowed by the food labeling regulation. Therefore, it was agreed to consider a minimum fat content of 45% for all types milk (sheep, cow, mixed).

Spring water. Since all producers in Tusheti use spring water, it was suggested to include the use of spring water in the specifications.

Curding. The specification indicates the use of a wooden vessel for coagulation, although it has emerged that the use of plastic materials or stainless steel is the most common. Since the use of plastic does not constitute a traditional practice, only use of wooden or stainless-steel vessel will be allowed. Additionally, based on producers’ indications, it was agreed to add that boiling water can be used to reach the temperature of 35-37°C.

Identification. Producers indicate the production date of cheeses though a wooden tag on the guda. It was agreed that producers should also indicate in the tag their producer code and the number of cheeses in the guda.

Delimitation of area. Producers explained that for the refining stage and final preparation (cutting and packaging), cheeses are brought lowland passing though the villages of Pshaveli, Laliskuri, Kvemo Alvani and Zemo Alvani. Hence these should be included in the PDO delimitation area. It was agreed to include an additional paragraph to the specification, indicating that, only for the refining stage and final preparation (cutting and packaging), the area is extended to the above-

\(^1\) For instance, it emerged that some of the producers are already experimenting ways to reduce salt in the final product. A producer explained he has recently experimented to put salt in the milk (15 g of salt per liter) before adding the rennet. The texture of the curd was not changed. He would then add just 100 g of salt to the cheese shape, but he will have to wait for the final result.
mentioned villages. The delimitation map will be revised accordingly and the historical description of the pastoralism and traditional places covered will be added.

Inputs to Control Plan

In the afternoon session, in order to work on the certification process for Tushetian guda in an practical way, participants split into 3 groups and were provided with a draft scheme control plan based on which they could provide their inputs. After the group consultation and during the wrap-up discussion also some information on the production process (curding and dis-curding stage) were clarified and were added in the specifications.

Main inputs from the group exercise are the following (scheme with detailed inputs is provided in Annex 4):

- Farm location control point: since often farms have not defined boundaries, provision of GPS location would be useful;
- Feed control point: indication of the origin of bought feed used for winter feeding;
- Milking program control point: envisaged one or two milking per day for sheep;
- Temperature checking of milk during fermentation should be documented and done with a thermometer;
- Additional control point on curding and dis-curding: use of birch stick for steering the mass, then leaving it for 10 minutes; removal of whey and cutting of the curd with a wooden knife, which is then pressed and put it in fabric bags for draining;
- Ripening and storage temperature control points: this remains a pending issue since current conditions do not allow for a constant storage temperature, and it would be difficult to respect the maximum storage temperature of 22°C in summer. This would entail the provision of some simple equipment/facility for storage for keeping a constant storage temperature.

Finally, Pascal Bernadoni briefed the participants on the activities planned for mid-July 2018, i.e. a simulation exercise of the certification process with producers, certifiers and public authorities for
the two cheese pilots, to serve also as a field training. The simulation will be organized at producers’ premises (for Tushetian Guda preferably at the cooperative premise) and will show what is an effective evaluation, certification and control process. The exercise will therefore allow to test the complete mechanism and assess eventual shortcomings, providing further inputs for the development of the definitive control plan. It will also serve to better define the role of each actor in the certification scheme.

Decisions
The agreed revisions in the specifications are the following:

- Concentration of salt in the brine of maximum 10%;
- A maximum salt content in the cheese of 8%;
- A transitional period of 3 years to allow for adjustments in salt content;
- Minimum fat content of 45% for all types of milk (cow, sheep and mixed);
- Wooden identification mark on each guda (producer code; date of production; number of cheeses in the guda);
- Delimitation of area extended to the lowland villages of Pshaveli, Laliskuri, Kvemo Alvani and Zemo Alvani.
- Details on dis-curding: after steering with birch tree stick for formation of granules, whose size should be between a pea and hazelnut, the mass is then left for 10 minutes, after which the whey is removed off and the curd is cut with wooden knife. The curd is then put and pressed in pieces of fabric which are folded and tied over the cheese, forming of bag. The bags are put on the wooden table for draining of the whey.

Next steps
The revisions agreed during the discussion have been incorporated in the specifications, which are under final review of the project expert team. With regards to the control plan, a finalized draft is necessary before the simulation exercise in July 2018. A consultative meeting between Elkana, producers and NFA is therefore planned at the end of June for the final validation of the revised specifications and the finalization of the draft control plan. All the revisions made in the specifications should be reflected in the control plan.

CONSULTATION WORKSHOP on SULGUNI, 25 MAY 2018
Elkana office, 10:00-15:30 h

The third workshop for producers consultation on sulguni, followed the same format as the one for Tushetian guda. The following activities were carried out:

1) Present the results of the sensory analysis for Sulguni performed in February 2018;
2) Revise with the participants particular aspects of the Sulguni specification;
3) Carry out a group exercise and gather inputs from the participants for the development of a draft zero control plan, working on:
 a. Product characteristics
 b. Process of production
 c. Traceability

Mariam Jorijaze, Elkana, presented workshop’s objectives and agenda (Annex 1). A total of 25 participant attended the workshop (see list of participants in Annex 2), including 5 Sulguni producers and the secretary of the national dairy association, 8 persons from NFA, and 1 representatives from Caucasert, who will be in charge of the certification controls for Sulguni. From the FAO Georgia country office, Kateryna Poberezhna attended the event.

Sensory and laboratory analysis

The results of the sensory analysis for Sulguni were exposed to the participants by Mariam Jorjadze. The following results and proposals were presented:

- Cheeses with a fat content between 30.9% and 42% considered relevant to the GI by the panelists;
- Panelists agreed on the fact that the description of layers should be included in the specifications. Layers should be elastic, visible, identifiable and detachable;
- Even though is commonly assumed that fat content is directly related to the presence of layers, this does not affect the determination of cheese layers;
- Texture for fresh Sulguni should be juicy, with liquid between layers when cutting, while texture for the mature variant should be more unctuous. In relation to this, there is the need to distinguish between fresh and mature variants, indicating the maximum days until which Sulguni is considered fresh;
- Salt levels previously set between 5 and 7% remain unchanged.

Discussion

Participants agreed on the proposal of the variants and based on the presented results have provided their inputs for the revision of these aspects in the specifications.

Sulguni variants. The first question raised to the participants was to consider in the GI specifications only one type/shape of Sulguni or also include other variants. Participants stated that they also consider Sulguni the variants with additional ingredients – herbs (mint is the most traditional used herb), adjika, tarragon, wine or honey – as the preparation process is the same as the normal Sulguni and ingredients can be added after kneading or after the shaping of the cheese. These inputs were included in the specifications, stating also that these additional ingredients should origin from Georgia. Different shapes including strings, tresses or some animal shapes prepared in occasion of traditional events are also considered as Sulguni. Participants were then asked to provide a distinction between fresh and aged Sulguni. They specified that the cheese is considered fresh up to three days from the date of curding and until then the cheese is not put in brine. Another included variant is the smoked Sulguni that can be obtained from hot or cold smoking with a duration between 1 to 22 hours and 72 hours and one week, respectively.
Fat content. Like Tushetian Guda, also for Sulguni there is no need to specify a maximum fat content as it is not relevant to the specifications. The indication of a minimum fat content is sufficient, and according to the type of milk, the agreed minimum fat content is of 30% for cow milk, 45% for buffalo milk and 40% for mixed cow-buffalo.

Moisture content. Stephanie Duchet recommended not to include this detail in the specifications. This is because proper moisture contents normally result in ideal/desired cheese organoleptic characteristics. Therefore, any specified value for moisture levels would be redundant.

Curding. Producers referred that pepsin is currently widely used. It was discussed that for the PGI Sulguni animal or microbial rennet should be used (it can be imported). Therefore, a transitional period of 3 years from Sulguni registration has been considered in the specifications, during which use of pepsin will be allowed. Producers then specified that the size of the curd grains obtained should be between a hazelnut and a walnut.

Additional details in the revised specifications were included by the project team after the field visits to Samgrelo on 26 to 28 May (see mission report).

Inputs to Control Plan
In the afternoon session participants split into 3 groups and were provided with a draft scheme control plan based on which they could provide their inputs. Some main inputs that emerged form the group work are indicated below (control plan scheme with detailed inputs is provided in Annex 3):

- Farm location control point: provision of GPS or registry data;
- Number of cows/buffalos: consider a database of registered animals and list of suppliers;
- Milk reception control point: record of milk amounts and milk type (cow/buffalo);
- Processing stage – brine use control points: exact brine temperature should be recorded (through thermometers);
- Final product quality: organoleptic testing should be arranged by the Association once per year with the attendance of the certification body. A number of cheeses for tasting should be set.

After discussion of the inputs, Pascal Bernardoni briefed the participants on the objectives of the above-mentioned certification simulation of mid-July 2018. For Sulguni, it is proposed to carry out two simulations, one at a small producer/artisanal level, and one at one larger level.

Next steps
Also for the pilot Sulguni, immediate next steps will be the final validation of the revised specifications by the producers, together with the finalization of a draft control plan (reflecting all the amendments of the specifications), to be ready before the simulation activities in July. To this
end, Elkana will organize a consultative meeting between producers and CaucasCert at the end of June.
Annex 1 – Workshops’ agenda

23 MAY – WORKSHOP 1 – THEORY ON CONTROLS AND CERTIFICATION
10.00 – 12.45 Morning session

1. The objectives of controls and certifications of PDOs and PGIs (Pascal Bernardoni, REDD)
 • Why control and certification are important?
 • Agricultural/food policies, Food quality and food safety
 • Different voluntary quality certification schemes
 • Legal basis for control and certification
 • Roles of the Competent Authorities (CA) and the Control Bodies (CB) and the accreditation
 • Market surveillance

2. Overview of international standards for certification (Ia Ebralidze, Elkana)
 • Overview of all the international standards
 • International standards for certification of management systems
 • International standards for certification of product
 • Importance of accreditation

LUNCH BREAK
13.30 – 15.30: Afternoon session

3. Case studies (Pascal Bernardoni, REDD)
 Comté; Grana Padano
 • Specification of the PDO
 • Three main components of the control: Inspection – Test of the final Product – Traceability
 • Controls and stakeholders
 • Certification and Labelling

4. Control plan and certification (Pascal Bernardoni, REDD)
 • What is control, what is certification?
 • Basis for control and certification: the specifications
 • Controls in practice
 • Elements of the control plan
 • Consequences of non-compliance
 • Who does what? Preparation of the control plan / Internal vs external control

15.15 END OF WORKSHOP
24 MAY – SPECIFICATION VALIDATION AND DEVELOPMENT OF THE CONTROL PLANS FOR TUSHETIAN GUDA

10.00 – 13.10: Morning session
10.00 Laboratory and sensory analysis results (30’)
10.45 Validation of the specifications
12.00 Development of the “Plan of Control Draft 0”
 Group work : from Specification to Control Plan
 - Product characteristics
 - Process of production
 - Traceability

14.00 LUNCH

14.00 – 17.00: Afternoon session
14.00 Group work presentation
15.15 Organisation of the simulation exercise to be organised on July 2018
 - Selection of the dairy(ies)
 - Calendar
 - Logistics

17.00 END OF THE WORKSHOP

25 MAY – SPECIFICATION VALIDATION AND DEVELOPMENT OF THE CONTROL PLANS FOR SULGUNI

10.00 – 13.10: Morning session
10.00 Laboratory and sensory analysis results (30’)
10.45 Validation of the specifications
12.00 Development of the “Plan of Control Draft 0”
 Group work : from Specification to Control Plan
 - Product characteristics
 - Process of production
 - Traceability

14.00 LUNCH

14.00 – 17.00: Afternoon session
14.00 Group work presentation
15.15 Organisation of the simulation exercise to be organised on July 2018
 - Selection of the dairy(ies)
 - Calendar
 - Logistics

17.00 END OF THE WORKSHOP
Annex 2 - List of participants

Workshop 23 May 2018
Theory on Controls and Certification

<table>
<thead>
<tr>
<th>N</th>
<th>Name, Surname</th>
<th>Organization, Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mariam Gordadze</td>
<td>NFA</td>
<td>mariam.gordadze@nfa.gov.ge 577 08 07 88</td>
</tr>
<tr>
<td>2</td>
<td>Ana Gemazashvili</td>
<td>NFA</td>
<td>ana.gemzashvili@nfa.gov.ge 599 325995</td>
</tr>
<tr>
<td>3</td>
<td>Natia Totadze</td>
<td>NFA</td>
<td>natia.totadze@nfa.gov.ge 577 080730</td>
</tr>
<tr>
<td>4</td>
<td>Dea Pochkhidze</td>
<td>NFA, Food Safety Department; Senior Specialist</td>
<td>dea.pochkhidze@nfa.gov.ge 598 984734</td>
</tr>
<tr>
<td>5</td>
<td>Elene Giorgadze</td>
<td>NFA, Food Safety Department, Expert</td>
<td>elenegiorgadze2000@yahoo.com 599403010</td>
</tr>
<tr>
<td>6</td>
<td>Manana Zurabashvili</td>
<td>NFA, Kakheti Region</td>
<td>Manana.zur@gmail.com 595501841</td>
</tr>
<tr>
<td>7</td>
<td>Giorgi Meskhishvili</td>
<td>NFA, Kakheti Region</td>
<td>meskhishvili@yahoo.de 591550500</td>
</tr>
<tr>
<td>8</td>
<td>Koba Michilashvili</td>
<td>NFA, Kakheti Region</td>
<td>Kbamichelachvili@gmail.com 59507634</td>
</tr>
<tr>
<td>9</td>
<td>Madona Jorbenadze</td>
<td>Accreditation Center, Chief Specialist</td>
<td>madona@gac.gov.ge</td>
</tr>
<tr>
<td>10</td>
<td>Zurab Nadareishvili</td>
<td>Caucasuscert, Founder</td>
<td>zn@caucasuscert.ge 599900871</td>
</tr>
<tr>
<td>11</td>
<td>Koba Dzamashvili</td>
<td>Caucasuscert</td>
<td>kobavsf@gmail.com 599511363</td>
</tr>
<tr>
<td>12</td>
<td>Gocha Gagashvili</td>
<td>"Tshivi Cheese"</td>
<td>gochagagashvili@yahoo.com 599621252</td>
</tr>
<tr>
<td>13</td>
<td>Vasil Dzotsenidze</td>
<td>Nikora</td>
<td>Vasil.dzotsenidze@nikora.ge 595701100</td>
</tr>
<tr>
<td>14</td>
<td>Tamaz Makharashvili</td>
<td>Ltd “Georgian Milk”-Brand “Milko</td>
<td>Makhara5@gmail.com 595330200</td>
</tr>
<tr>
<td>15</td>
<td>Irma Antia</td>
<td>Ltd “Natural +”</td>
<td>irmaantia@yahoo.com 577125028</td>
</tr>
<tr>
<td>16</td>
<td>Kakhaber Koniashvili</td>
<td>Head of the association – “Saqrde” (Georgian Milk)</td>
<td>kakahberk@gmail.com info@dairygeorgia.ge; 591 44 55 38</td>
</tr>
<tr>
<td>17</td>
<td>Giorgi Abulidze</td>
<td>Association "Tushetien Guda"</td>
<td>abulidze@gmail.com 557 626662</td>
</tr>
<tr>
<td>N</td>
<td>Name, Surname</td>
<td>Organization, Position</td>
<td>Contact Information</td>
</tr>
<tr>
<td>----</td>
<td>------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>Giorgi Karsamauli</td>
<td>Association "Tushetien Guda"</td>
<td>gkarsamauli@gmail.com 598831594</td>
</tr>
<tr>
<td>19</td>
<td>Koba Gaprindauvili</td>
<td>Association "Tushetien Guda", Member</td>
<td>k.gaprindauvili@gmail.com 598371864</td>
</tr>
<tr>
<td>20</td>
<td>Emilie Vandecandelaere</td>
<td>FAO, Agribusiness Economist; Investment Center / Nutrition and Food system Division</td>
<td>Emilie.Vandecandelaere@fao.org</td>
</tr>
<tr>
<td>21</td>
<td>Stefania Manzo</td>
<td>FAO</td>
<td>Stefania.Manzo@fao.org</td>
</tr>
<tr>
<td>22</td>
<td>Gia Bibleishvili</td>
<td>EBRD / FAO</td>
<td>gia.bibleishvili@fao.org 599281414</td>
</tr>
<tr>
<td>23</td>
<td>Stéphanie Duchet</td>
<td>GI trainer and legal advisor, National Institute for Origin and Quality products (INAO)</td>
<td>s.duchet@inao.gouv.fr</td>
</tr>
<tr>
<td>24</td>
<td>Pascal Bernardoni</td>
<td>REDD, Expert</td>
<td>pascal.bernardoni@redd.pro</td>
</tr>
<tr>
<td>25</td>
<td>Mariam Jorjadze</td>
<td>Elkana, Director</td>
<td>director@elkana.org.ge 577497401</td>
</tr>
<tr>
<td>26</td>
<td>Tamaz Dundua</td>
<td>Elkana, Program Manager</td>
<td>manager@elkana.org.ge 595953377</td>
</tr>
<tr>
<td>27</td>
<td>Tamar Noniashvili</td>
<td>Elkana, Project Coordinator</td>
<td>GI_elkana@outlook.com 598370751</td>
</tr>
<tr>
<td>28</td>
<td>Zaza Kilasonia</td>
<td>Elkana, Project Officer</td>
<td>GI_elkana@outlook.com 593119331</td>
</tr>
<tr>
<td>29</td>
<td>Ia Ebralidze</td>
<td>Elkana, Certification & Branding</td>
<td>branding@elkana.org.ge 599700107</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Workshop 24 May – Specification and Development of the Control Plan for Tushetian Guda

<table>
<thead>
<tr>
<th>N</th>
<th>Name, Surname</th>
<th>Organization, Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mariam Gordadze</td>
<td>NFA</td>
<td>mariam.gordadze@nfa.gov.ge 577 08 07 88</td>
</tr>
<tr>
<td>2</td>
<td>Ana Gemazashvili</td>
<td>NFA</td>
<td>ana.gemzashvili@nfa.gov.ge 599 325995</td>
</tr>
<tr>
<td>3</td>
<td>Natia Totadze</td>
<td>NFA</td>
<td>natia.totadze@nfa.gov.ge 577 080730</td>
</tr>
<tr>
<td>4</td>
<td>Dea Pochkhidze</td>
<td>NFA, Food Safety Department; Senior Specialist</td>
<td>dea.pochkhidze@nfa.gov.ge 598 984734</td>
</tr>
<tr>
<td>5</td>
<td>Elene Giorgadze</td>
<td>NFA, Food Safety Department, Expert</td>
<td>elenegiorgadze2000@yahoo.com 599403010</td>
</tr>
<tr>
<td>N</td>
<td>Name, Surname</td>
<td>Organization, Position</td>
<td>Contact Information</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>Manana Zurabashvili</td>
<td>NFA, Kakheti Region</td>
<td>Manana.zur@gmail.com 595501841</td>
</tr>
<tr>
<td>7</td>
<td>Giorgi Meskhishvili</td>
<td>NFA, Kakheti Region</td>
<td>meskhishvili@yahoo.de 591550500</td>
</tr>
<tr>
<td>8</td>
<td>Koba Michilashvili</td>
<td>NFA, Kakheti Region</td>
<td>Kbamichelachvili@gmail.com 595075634</td>
</tr>
<tr>
<td>9</td>
<td>Giorgi Abulidze</td>
<td>Association "Tushetien Guda"</td>
<td>abulidze@gmail.com 557 626662</td>
</tr>
<tr>
<td>10</td>
<td>Giorgi Karsamauli</td>
<td>Association "Tushetien Guda"</td>
<td>gkarsamauli@gmail.com 598831594</td>
</tr>
<tr>
<td>11</td>
<td>Koba Gaprindauvili</td>
<td>Association "Tushetien Guda", Member</td>
<td>k.gaprindauli@gmail.com 598371864</td>
</tr>
<tr>
<td>12</td>
<td>Emilie Vandecandelaere</td>
<td>FAO, Agribusiness Economist; Investment Center / Nutrition and Food system Division</td>
<td>Emilie.Vandecandelaere@fao.org</td>
</tr>
<tr>
<td>13</td>
<td>Stefania Manzo</td>
<td>FAO</td>
<td>Stefania.Manzo@fao.org</td>
</tr>
<tr>
<td>14</td>
<td>Kateryna Poberezhna</td>
<td>EBRD / FAO</td>
<td>poberezK@ebrd.com 599 111073</td>
</tr>
<tr>
<td>15</td>
<td>Stéphanie Duchet</td>
<td>Gi trainer and legal advisor, National Institute for Origin and Quality products (INAO)</td>
<td>s.duchet@inao.gouv.fr</td>
</tr>
<tr>
<td>16</td>
<td>Pascal Bernardoni</td>
<td>REDD, Expert</td>
<td>pascal.bernardoni@redd.pro</td>
</tr>
<tr>
<td>17</td>
<td>Mariam Jorjadze</td>
<td>Elkana, Director</td>
<td>director@elkana.org.ge Mob: 577497401</td>
</tr>
<tr>
<td>18</td>
<td>Tamaz Dundua</td>
<td>Elkana, Program Manager</td>
<td>manager@elkana.org.ge 595953377</td>
</tr>
<tr>
<td>19</td>
<td>Tamar Noniashvili</td>
<td>Elkana, Project Coordinator</td>
<td>GI.elkana@outlook.com 598370751</td>
</tr>
<tr>
<td>20</td>
<td>Zaza Kilasonia</td>
<td>Elkana, Project Officer</td>
<td>GI.elkana@outlook.com 593119331</td>
</tr>
<tr>
<td>21</td>
<td>Ia Ebralidze</td>
<td>Elkana, Certification & Branding</td>
<td>branding@elkana.org.ge Mob: 599700107</td>
</tr>
</tbody>
</table>

Workshop 25– Specification and Development of the Control Plan For Sulguni

Tbilisi, Elkana, 25.05.2018

<table>
<thead>
<tr>
<th>N</th>
<th>Name, Surname</th>
<th>Organization, Position</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mariam Gordadze</td>
<td>NFA</td>
<td>mariam.gordadze@nfa.gov.ge 577 08 07 88</td>
</tr>
<tr>
<td>2</td>
<td>Ana Gemazashvili</td>
<td>NFA</td>
<td>an.gemzashvili@nfa.gov.ge 599 325995</td>
</tr>
<tr>
<td>3</td>
<td>Natia Totadze</td>
<td>NFA</td>
<td>natia.totadze@nfa.gov.ge 577 080730</td>
</tr>
<tr>
<td>4</td>
<td>Dea Pochkhidze</td>
<td>NFA, Food Safety Department; Senior Specialist</td>
<td>dea.pochkhidze@nfa.gov.ge 598 984734</td>
</tr>
<tr>
<td>N</td>
<td>Name, Surname</td>
<td>Organization, Position</td>
<td>Contact Information</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>Elene Giorgadze</td>
<td>NFA, Food Safety Department, Expert</td>
<td>elenegiorgadze2000@yahoo.com 599403010</td>
</tr>
<tr>
<td>6</td>
<td>Manana Zurabashvili</td>
<td>NFA, Kakheti Region</td>
<td>Manana.zur@gmail.com 595501841</td>
</tr>
<tr>
<td>7</td>
<td>Giorgi Meskhishvili</td>
<td>NFA, Kakheti Region</td>
<td>meskhishvili@yahoo.de 591550500</td>
</tr>
<tr>
<td>8</td>
<td>Koba Michilashvili</td>
<td>NFA, Kakheti Region</td>
<td>Kbamichelachvili@gmail.com 595075634</td>
</tr>
<tr>
<td>9</td>
<td>Koba Dzamashvili</td>
<td>Caucasscert</td>
<td>kobavsf@gmail.com 599511363</td>
</tr>
<tr>
<td>10</td>
<td>Ana Ganugrava</td>
<td>Sante</td>
<td>aganugrava@sante.ge 599767641</td>
</tr>
<tr>
<td>11</td>
<td>Gocha Gagashvili</td>
<td>"Tshivi Cheese"</td>
<td>gochagagashvili@yahoo.com 599621252</td>
</tr>
<tr>
<td>12</td>
<td>Vasil Dzotsenidze</td>
<td>Nikora</td>
<td>Vasil.dzotsenidze@nikora.ge 595701100</td>
</tr>
<tr>
<td>13</td>
<td>Tamaz Makharashvili</td>
<td>Ltd “Respiblika”-Brand “Milka”</td>
<td>Makhara5@gmail.com 595330200</td>
</tr>
<tr>
<td>14</td>
<td>Irma Antia</td>
<td>Ltd “Natural +”</td>
<td>irmaa.ntia@yahoo.com 577125028</td>
</tr>
<tr>
<td>15</td>
<td>Kakhaber Koniashvili</td>
<td>Head of the association – “Saqrdze” (Georgian Milk)</td>
<td>kakhaberk@gmail.com info@dairygeorgia.ge 591 44 55 38</td>
</tr>
<tr>
<td>16</td>
<td>Emilie Vandecandelaere</td>
<td>FAO, Agribusiness Economist; Investment Center / Nutrition and Food system Division</td>
<td>Emilie.Vandecandelaere@fao.org</td>
</tr>
<tr>
<td>17</td>
<td>Stefania Manzo</td>
<td>FAO</td>
<td>Stefania.Manzo@fao.org</td>
</tr>
<tr>
<td>18</td>
<td>Kateryna Poberezhnna</td>
<td>EBRD / FAO</td>
<td>poberezK@ebrd.com 599 111073</td>
</tr>
<tr>
<td>19</td>
<td>Stéphanie Duchet</td>
<td>GI trainer and legal advisor, National Institute for Origin and Quality products (INAO)</td>
<td>s.duchet@inao.gouv.fr</td>
</tr>
<tr>
<td>20</td>
<td>Pascal Bernardoni</td>
<td>REDD, Expert</td>
<td>pascal.bernardoni@redd.pro</td>
</tr>
<tr>
<td>21</td>
<td>Mariam Jorjadze</td>
<td>Elkana, Director</td>
<td>director@elkana.org.ge Mob: 577497401</td>
</tr>
<tr>
<td>22</td>
<td>Tamaz Dundua</td>
<td>Elkana, Program Manager</td>
<td>manager@elkana.org.ge Mob: 595953377</td>
</tr>
<tr>
<td>23</td>
<td>Tamar Noniashvili</td>
<td>Elkana, Project Coordinator</td>
<td>GI_elkana@outlook.com Mob: 598370751</td>
</tr>
<tr>
<td>24</td>
<td>Zaza Kilasonia</td>
<td>Elkana, Project Officer</td>
<td>GI_elkana@outlook.com Mob: 593119331</td>
</tr>
<tr>
<td>25</td>
<td>Ia Ebralidze</td>
<td>Elkana, Certification & Branding</td>
<td>branding@elkana.org.ge Mob: 599700107</td>
</tr>
</tbody>
</table>
Annex 3 – Revised Specifications

Tushetian Guda

Specification of the Protected Designation of Origin Tushetian Guda

I. Name of the Appellation of Origin
თუშ ური გუდა
English translation: Tushetian Guda
Cyrillic: ТУШУРИ ГУДА

II. Description of the product
Tushetian Guda is a cheese produced from sheep, cow or cow and sheep mixed (50/50%, ±5%) raw milk, which ripens in the “Guda” (bag made from skin of sheep, goat or calf, trimmed from inside).

Organoleptic characteristics

Form

The shape can vary and depends on the location of the cheese in the Guda during the ripening process. The cheeses at the ends of the Guda are hemispheric (see picture 1). The cheeses in the middle have the cylindrical shape (see picture 2). A slight deformation of the cylindrical shape is also permitted (see picture 3). The visual presence of “Guda trace” is a must; the surface is not smooth and “Guda trace” is visible. Cracks up to 2 cm are permitted. Has no crust. The mass is 5-10 kg.
Colour

Sheep Tushetian Guda's outside colour is white to greyish/greenish. Inside colour is intense yellow in the centre. When cutting the cheese in two, a whitish ring up to 2 cm wide can be observed at the edge of the cheese.

Cow Tushetian Guda's outside colour is creamy. Inside colour is very light yellow.

Sheep and cow mixed milk Tushetian Guda's outside colours are similar to the sheep Tushetian Guda's, but less intense. Inside is slightly darker in yellow.

Texture

The cheese consistency is uniform, dense and slightly elastic. Cheese must not be crumbly or soft. Holes of various shapes and sizes are present. The size of holes should not exceed 10mm. Yellowish drops of fat can exudate from the holes when the cheese is cut vertically.

Smell

Pungent and should not have strange or unpleasant smell caused by bacterial activity.

Taste

Sharp, salty, piquant and umami. Should not have bitter, rusty taste.

Physicochemical properties

The fat content in the dry matter is minimum 45%

Salt content in the dry matter is maximum 8%.

For a transitional period of three years from the registration date, cheeses with higher salt content are allowed.

I. Description of the method of obtaining the product and, where appropriate, the authentic and unvarying local methods

Milk production

Transhumance and summer pasturing

The milk used for the different Tushetian Gudas is produced by animals pasturing on the area of production of the Tushetian Guda for at least 60 days during the summer months. In May or June, shepherds send their flocks and herds to feed in the lush upland pastures of Tusheti in summer, bringing them back to lowlands again in September, a practice known as transhumance.

Feeding

When in the area of production of Tusheti Guda area during the summer months, animals are fed exclusively with pasture grass. During the transhumance period in case of harsh winter, distribution of hay and mix of barley and maize is allowed to sheep and cow.

Milk characteristics
Sheep milk used for Tushetian Guda making comes exclusively from Tushetian sheep breed. Tushetian Guda is made out of raw whole milk of the day.

Preparation of the guda (sheepskin bag)

Sheepskins sourced in Georgia are obtained by skinning the animal from the back to head without cutting it longitudinally.

Sheepskins are then dried by introducing a stick and hang in the shadow for a period going from 2 to 4 weeks. The dry skin can be stored. The skin is put to soak in water or whey for two days, before the hair is trimmed one to two centimetres long. The skin is then rinsed twice to three times, and returned in order to place the hair inside the skin, before placing the cheeses in it.

Cheese production

Filtering

The raw milk is filtered in a few layers (minimum five) laid out with cheesecloth and a combination of the following herbs: nettles (*Utrica Urens*), mother of nettles (*Lamium Album*) and feathergrass (*Stipa*).

Curding

After filtration, the milk is poured into a wooden (oak, aspen) or stainless steel vessel. The milk is mixed with the preliminarily prepared rennet from calf or lamb stomach, stirred it with a branch with the end in hand shape made from poplar and left for fermentation at a temperature between 35-37°C. To obtain the required temperature, it is allowed to add boiled water to the milk.

Dis-curding

When the curd is firm and separates from the whey, it is ready to be a stirred a second time with a branch until granules of a size between a pea and hazelnut are formed and left between 5 to 10 minutes, before to extract the whey.

Draining of the whey and forming the cheese

The mass is then cut with wooden knife. The mass is then put and pressed in the cheesecloth that once folded and tied over the cheese. The bags are put on the wooden table for draining the whey.

For Tushetian Guda made from cow milk, after the draining and before moving it to the “Guda”, the cheese is placed for a maximum of 24 hours in a wooden vessel (*Dergi*) for keep the cheese together. For mix Tushetian Guda, the use of the wooden vessel (*Dergi*) is allowed if the texture of the cheese requires it.

Salting

The cheeses are then placed in the Guda, and salt is poured on the top of each cheese. No other ingredient than the above-mentioned is allowed.

The Tushetian guda is ripened in the guda during a period of minimum 60 days in dry and cool place. The temperature must in no cases exceed 22°C.
Transport

For the transport of the product to the lowland, the brine is extracted from the guda. Before storing the cheese in the guda in the low and, brine of maximum 10% concentration salt is inserted in the guda to complete the ripening.

II. The definition of the geographical area
Delimitation of the area of production

The Geographic area of Tushetian Guda production coincides with the Tusheti historical region, which is limited by the border with Chechnya in north, Dagestan - east, and the border between Kakheti and Mskheta Mtianeti - west. The south border coincides with the boundaries of the Tusheti National park.

For the completion of ripening, when needed, cutting and packaging, the area is extended to villages of Pshaveli, Kvermo Alvani, Zemo Alvani and Laliskuri.

The whole area belongs to the territory of the Kakheti region. Map of the area of milking and cheese production
III. **Evidence that the product originates in the defined geographical area (traceability system)**

Traceability will rely on auto-control and internal control system that will be checked by the body in charge of certification.

Auto-control:

Each shepherd will:

- Declare the number of Gudas bought at the beginning of the season and the number of Gudas left at the end of the season
- Keeps records reporting the number of sheep and the breed (total and milking)
- Keep records reporting the daily quantity of milk used for Tushetian Guda making and daily number of cheeses, kilograms and number of Guda used.

Each producer will fill forms containing these data to the Association “Tushuri Guda”.

Producer applies a wooden mark on each guda showing:

- Producer code
- The day of production
- The number of cheeses in the guda

On each product put on the market, producers will apply QR-code referring to the webpage of the single producer.

Internal control:

The Association “Tushuri Guda” is responsible of the internal control that will be performed by the quality control commission. For the sake of the traceability control, the commission will check if the declarations of the producers correspond to the actual stocks, quantities milk processed and cheese produced. For each producer, the commission will collect and crosscheck the data recorded by the single producers.

The data will be entered in a register managed by the association “Tushuri Guda” and made available to the certification body according to the control plan prescriptions.

The association will produce and distribute wooden marks to producers.

IV. **The link between the quality or characteristics of the product and the geographical environment**

Natural environment

Climate is characterized by continental climate with snow cover for 5-6 months and by mild to fresh summers.

1) Humid climate with cold winters and short summers (1,600 m. above sea level);
2) Transitional mountain climate with cold winter and short summer (2,000 – 2,400 m. above sea level);
3) Moderately humid climate of highlands without real summer (2,400-3,400 m. above sea level);
4) Humid climate of highlands with constant snow and glaciers, where the average temperature for all months of the year is below zero (3,400 m. above sea level).
Tushetian Guda cheese is produced from June to August on sub-alpine (*Festuca ovina, Poa alpina, Zerna variegata, Dactylis glomerata, Lotus*) and alpine (*Festuca ovina, Poa alpina, Carex tristis and Campanula tridentata*) summer pastures. Traditionally the land at the altitudes of 1,600 - 1,900 m. was used for agriculture and cattle breeding, while the sheep was kept in a pastures at the altitudes of 2,000 – 3,400 m.

In the past agriculture was very important and big areas were cultivated to fully satisfy populations requirement for cereal crops. In late fifties after forced displacement of the population to lowland agricultural activities were almost completely stopped (all cereals were imported) and animal breeding became the only economic activity. Nowadays sheep breeding takes place on the lower pasture areas and in the former traditional area for pasturing as well.

Human environment

In order to secure food for the long winter period Tushetian farmers have developed traditional ways of preserving cheese in Guda. Over the past centuries shepherds have fine-tuned the process and transmitted the knowhow from generation to generation.

The sheep breed used in Tusheti (Common name: Sheep Latin name: *Ovis Aries* Breed: *Tushuri (Tushetian) sheep*) has been bred over centuries. The modern appearance of Tushuri (Tushetian) sheep was developed in XIII-XIV centuries. It is a meat, wool and milk productive animal. The breed is distributed in East Georgia and is characterized by the sturdy constitution and easy endurace of extreme migratory conditions on long distances (up to 500 km).

Natural factors

The floristic composition of the pastures influence the flavour of the milk used eventually for the production of Tushetian Guda.

Relativity cool summers allows ripening of the cheese in optimal conditions.

Human factors

The milk produced by the Tushetian sheep breed is distinguished with high fat content reflected in the cheese fattiness.

The ripening method using Guda and the rennet cause the transformation of the cheese involving among others lipolysis of fats conferring to cheese its specific taste and aromas.

Reputation

Tushetian Guda cheese produced in Tusheti has been consumed in Georgia and abroad for several centuries. Nowadays, Tushetian guda, is commercialised and well recognized by consumers in the whole Georgia and several former Soviet countries. The fabrication process is well known as it has been described in several publications, and documented and make reference in different movies:

- Publication “Tusheti”, 1993. Publication is based on the researches of the Georgian chronicler Giorgi Bochoridze (1884-1939). Besides the description of Tushetian Guda cheese making process includes drawings of Tushetian household type and equipment (drawings belong to Giorgi Bochoridze).
• The film “Tushetian shepherd” by Soso Chkhaidze produced in 1976 describes in details the transhumance process and lives of Tushetian Shepherds;
• Documentary film by Levan Tutberidze “Tushetian cheese” produced in 1980

V. Authorities / bodies in charge of control and certification
National Food Agency, 6, Marshal Gelovani Ave., 0159, Tbilisi,

VI. Packaging and Labelling rules
Tushetian Guda can be sold in bulk or packed in vacuum or not. The cutting and packing must be performed by producers or packers, under the control of the Tushuri Guda association.

On their front label, producer will have to:

• Use the name “Tushetian Guda PDO” on the front label
• Use the appropriate Tushetian Guda PDO logo; and
• Use the official national logo for PDO following legal prescriptions
• Use any information prescribed by the traceability system.

The fonts of the name “Tushetian Guda PDO” on the front label must be bigger than the fonts than any other word on the label.

Logos for the different types of Tushetian Guda made from sheep milk, cow milk and mix-milks. (to add the pictures)

Sheep Mix Cow

The size of the Tushetian Guda logos will be minimum:

• xxx cm on sliced cheese sold under vacuum and
• XXX cm on whole cheeses

VII. Sanctions
In case non-compliance observed during internal or external controls, the following sanctions are applied.

Non-compliance elements do not impact on the product’s quality:

• Warning
The non-compliance elements, may affect the quality of the product, but the sincerity of the operator is clearly not in question:

• Rejection of the lot
The non-compliance elements, always affects the credibility of the product quality and / or the sincerity of the transaction is clearly questioned:

- Exclusion from the temporary certification
- Definitive exclusion from the benefits of certification

Annex 1: Auto-control form (will go in the control plan)
Sulguni

Specifications of the Protected Geographical Indication
Sulguni

III. The name of the Geographical Indication
ს ულგუნ ი

English translation: Sulguni

Cyrillic: СУЛГУНИ

IV. Description of the product
Sulguni cheese is produced from cow or buffalol milk or a mix of both milks; Sulguni is stretched-curd cheese (better known under “pasta filata” type) that is traditionally consumed within a week, or is dried or smoked for longer conservation. Sulguni cheese can also be presented with traditional ingredients.

Organoleptic Characteristics

Shape
Sulguni cheese has a shape of a low cylinder, without crust, with a diameter of 10-30 cm, a height of 2.5-3.5 cm and a mass of 0.4-3 kg.

Traditionally, Sulguni cheese is also shaped into various forms that are therefore also admitted:

- Spherical shape with a knot on the top
- Braids
- Strings
- in relation with traditional events, animal shape such as bird

Colour:
Inside and outside colour of Sulguni made from cow milk has a uniform colour from ivory to light yellow.

Inside and outside colour of Sulguni made from buffalo milk is white to ivory colour.

The crust of smoked sulguni is golden-brown, while the inside has a yellowish colour.

Sulguni with added ingredients such as herbs can take the colour of these ingredients.

Texture:
Sulguni made from cow milk has dense and elastic mass, and has detachable layers. The surface is smooth and should not be granular, providing in mouth an unctuous feeling. Sulguni is free of holes, but interstices between layers are admitted.
Sulguni must be juicy and layers easily detachable. Liquid between layers should be dripping when the cheese is cut in half.

Dried sulguni should have detachable layers, but is free of liquid.

Smell:

Sulguni has an appetizing smell of fresh milk and creamy aromas.

The smell of smoked Sulguni is characterised by the smell of smoke, without fully covering the aromas encountered in the non-smoked Sulguni.

Taste:

The taste of Sulguni is pure, milk/creamy, typical for the cultured milk product, moderately salty. It shall not have the taste of rennet or acid taste.

Smoked Sulguni is moderately but slightly more salty than the non-smoked Sulguni, with aroma of the smoked product.

Physicochemical properties

The **minimum fat content** of the dry matter for the different type of Sulguni is as follow:

- 30% for Sulguni made from cow milk
- **45% for** Sulguni made from buffalo milk
- **40% for Sulguni made of mix milks (buffalo and cow)**
- **45% for** smoked Sulguni

V. Description of the method of obtaining the product

Milk characteristics

Sulguni is made from fresh raw or pasteurized whole milk. The use of milk powder is not permitted.

Artisanal sulguni is produced twice a day with morning and evening milk.

Curding

The curding is obtained by introduction of animal or microbial rennet (the use of pepsin is allowed during a transitional period of 36 months after the registration of the Sulguni). At the beginning of the curding process the milk is heated at a temperature of 32°-39°C. When the curd is firm and separates from the whey, it is ready for dis-curding. The use of artificial ferments is not allowed for artisanal Sulguni.

Dis-curding

The obtained curd is cut and heated for the second time to the temperature of 34-37°C (heating for second time is not obligatory).

The curd is cut with a cheese harp or with hands until granules reach the size between a hazelnut and a walnut, and left between 5 to 10 minutes, before to extract the whey.
Draining of the whey and maturation of the curd

The curd is then poured in a tank or in vessels that allow the draining of the whey. After draining the whey, the curd is left for fermentation between 4 and 24 hours, a duration that depends on the temperature and the use or not of ferments. For artisanal Sulguni, a minimum of 5 hours is required. The curd is ready for the next steps when the curds start to have small openings well distributed on all the curd section, but before these opening increase in size and the mass becomes acid.

Kneading and forming the Sulguni cheese

The curd is then cut into thin layers, and placed very hot water but not boiling. It is stirred until it becomes uniformly stretching paste mass (the use of wooden spoon is recommended). The moulding of the cheese must be done by kneading the mass, and folding it four times, before to form a spherical shape that is cooled down with cold water or the remaining of the whey. The cheese is then ready for the salting process.

Salting

The salting can be done either by direct application of the salt on the cheese or by soaking the cheese in brine:

- Direct salting: Salt is then applied on the upper side of the cheese for the fabrication of the artisanal sulguni. The cheese will be then stored between 24 and 72 hours before to be ready for consumption.
- Brine: The cheese can also be put to soak in brine with a concentration of 1 kg of salt for 4 to 6 litres of water for 6 to 24 hours.

The sales of this Sulguni type (no smoked nor dried) are permitted after 24 hours up to 7 days after the salting process started.

Drying

After salting the Sulguni can be stored in a dry and ventilated place to be dried for several days or weeks. After drying, Sulguni can be sold under the name “dried sulguni” with the logo “dried sulguni”.

Smoking

After the salting process, the cheese can be smoked in the smoking chambers by burning pear, apple, alder and quince wood or sawdust. Cold and hot smoking are allowed.

- Hot smoking process last between 1 to 12 hours.
- Cold smoking last between 72 hours and one week.

After smoking, sulguni can be sold under the name “smoked sulguni” with the logo “smoked Sulguni”.

Sulguni with herbs and other ingredients

Different ingredients can be added during the kneading of the Sulguni or after the completion of the All ingredients must be from Georgian origin.

The ingredients allowed are:

- Mint and other local herbs
- Adjika
- Tarragon
- Honey
VI. The definition of the geographical area

The area of production of Sulguni PGI is the whole territory of Georgia. The milk and other ingredients used for the production of Sulguni PGI originates from Georgia (except if specified differently).

VII. Evidence that the product originates in the defined geographical area (traceability system)

Traceability will rely on auto-control and internal control systems that will be checked by the body in charge of certification.
Auto-control: Producers will keep records on milk quantity and milk origin, daily number of cheeses produced.
Internal control: The Dairy Association of Georgia will keep records of the number of Sulguni produced by producer and cross-check the origin of the milk used for sulguni making and the produced volumes.

VIII. The link between a given quality, the reputation or other characteristic of the product and the geographical origin

Reputation

There evidence of production and commercialisation use of Sulguni already in the end of 19th Century. In the last century, Sulguni became one of the most popular cheeses in Georgia, having a wide range of customers in Georgia and other former Soviet countries.

Any references to add? Sources? Reputation on export market?

Human factors

The culture of Sulguni production comes from west Georgia – Samegrelo and Svaneti, Traditional know-how has been transmitted from generation to generation and has spread to other regions in Georgia.

IX. The name and address of the authorities or, if available, the name and address of bodies verifying compliance with the provisions of the product specification

Caucascert, 2, Marshal Gelovani Street, Tbilisi 0159, Georgia

X. Packaging and labelling rules

Packaging

Sulguni can be sold in bulk or packed, but packaging should not damage cheese texture.
Labelling

Producer will have to follow the rules

- Use the name “Sulguni PGI” on the front label
- Use the appropriate Sulguni PGI logo; and
- Use the official national logo for PGI following legal prescriptions
- Use any information prescribed by the traceability system.

The fonts of the name “Sulguni PGI”, “Artisanal Sulguni”, “Dried Sulguni” or “Smoked Sulguni” on the front label must be bigger than the fonts than any other word on the label.

Logos for:

- Sulguni
- Artisanal sulguni
- Dried sulguni
- Smoked

The size of the logo will be minimum:

- 3 cm on the round shape sulguni
- 1.5 cm on the other shape sulguni
Annex 4 – Inputs to draft control plan

Tushetian Guda

<table>
<thead>
<tr>
<th>#</th>
<th>Control Point</th>
<th>Description</th>
<th>Control Method</th>
<th>Control Frequency/coverage</th>
<th>When to control</th>
<th>Who controls?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Farm Location</td>
<td>Is located inside the delimited area</td>
<td>Documented – GPS coordinates, map</td>
<td>Once a year, All producers</td>
<td>At the beginning of the season (May-June)</td>
<td>Internal control - and external control</td>
</tr>
<tr>
<td>2</td>
<td>Breed</td>
<td>Tushuri (Tushetian) Sheep; Georgian Mountain Cow.</td>
<td>Visual observation or Documented</td>
<td>Once a year, All producers</td>
<td>At the beginning of the season (May-June)</td>
<td>Visual observation and document – external evaluationVisual observation - producer</td>
</tr>
<tr>
<td>3</td>
<td>Quantity of milking sheep</td>
<td></td>
<td>Documented</td>
<td>Once per year</td>
<td>At the beginning of the season, May</td>
<td>Producer</td>
</tr>
<tr>
<td>4</td>
<td>The grazing pasture</td>
<td>In the summer period the sheep is grazed in determined area of GI</td>
<td>Visual observation or Documented, GPS</td>
<td>Once a year, All producers</td>
<td>At the beginning of the season (May-June)</td>
<td>Internal control and external control</td>
</tr>
<tr>
<td>5</td>
<td>Genetically modified crops</td>
<td>In winter period GM crops are not used for feeding</td>
<td>If feed is purchased for animals in winter period a document of its origin should be presented</td>
<td>Once a year, All producers</td>
<td>In winter and in summer</td>
<td>Auto control in winter and external control in summer</td>
</tr>
<tr>
<td>8</td>
<td>Milking Programme</td>
<td>The sheep is milked once or twice a day at the same time</td>
<td>Visual observation or Documented</td>
<td>Once a year, All producers</td>
<td>At the beginning of the season, when Guda cheese making starts</td>
<td>Internal control and external control</td>
</tr>
<tr>
<td></td>
<td>First processing stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Location of processing unit</td>
<td>The processing unit must be inside the delimited area.</td>
<td>Documented, GPS</td>
<td>Once per year</td>
<td>At the beginning of the season, when Guda cheese making starts</td>
<td>Internal control - member of the association</td>
</tr>
<tr>
<td>10</td>
<td>Equipment for the cheese factory</td>
<td>No means for pasteurizing the milk, no thermization or other means that will kill natural flora of the milk.</td>
<td>Visual observation</td>
<td>Once a year for all producers</td>
<td>At the beginning of the season and in the first week of August</td>
<td>Internal control and external control</td>
</tr>
<tr>
<td>11</td>
<td>Guda</td>
<td>It is made from calf or sheep skin.</td>
<td>Visual observation or Documented</td>
<td>Once a year for all producers, twice a year for 50% of the producers</td>
<td>At the beginning of the season in Tusheti and end of September-October in Alvani</td>
<td>Internal control and external control</td>
</tr>
<tr>
<td>12</td>
<td>Milk Collecting time after milking</td>
<td>Immediately after each milking session.</td>
<td>Documented</td>
<td>Once a year for all producers, twice a year for 50% of the producers</td>
<td>Daily records</td>
<td>Internal control - member of the association</td>
</tr>
<tr>
<td>13</td>
<td>Milk Filtration</td>
<td>The raw milk is filtered in a few layers (minimum five) laid out with fabric and a combination of the following herbs: nettles (Utrica Urens), mother of nettles (Laminum Album) and feathergrass (Stipa).</td>
<td>Visual observation or Documented</td>
<td>Once a year for all producers, twice a year for 50% of the producers</td>
<td>Daily records</td>
<td>Internal control - member of the association and/or external control: NFA or private</td>
</tr>
<tr>
<td>14</td>
<td>Ingredients to be added</td>
<td>The filtered milk is mixed with the preliminarily prepared rennet from calf or lamb stomach and left for fermentation at a temperature between 35-37°C in a wooden barrel - “kodi”, covered to keep warmth.</td>
<td>Visual observation or Documented temperature control with thermometer</td>
<td>Once a year for all producers, twice a year for 50% of the producers</td>
<td>At the beginning of the season and in the first half of August</td>
<td>Internal control - the association external control: NFA or private</td>
</tr>
<tr>
<td>Step</td>
<td>Description</td>
<td>Action</td>
<td>Frequency</td>
<td>Inspection</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Obtaining of curd and formation of granules</td>
<td>Obtained curd is fragmented with branched birch tree stick and granules are formed; the “kodi” is covered again (to keep warmth) for 10 minutes, after which the whey is removed off and the curd is cut with wooden knife. The curd is then put and pressed in pieces of fabric that once folded and tied over the cheese, form some kind of bag. The bags are put on the wooden table for draining the whey.</td>
<td>Visual observation or Documented, visual assessment of the size of granules</td>
<td>Once a year for all producers, twice a year for 50% of the producers</td>
<td>At the beginning of the season and in the first half of August</td>
<td>Internal control - the association; external control: NFA or private</td>
</tr>
<tr>
<td>16</td>
<td>Cheese making and shaping</td>
<td>The cheeses are then placed in the Guda, and salt is poured on the top of each cheese (0.7 kg per 10 kg of cheese). No other ingredient than the above-mentioned is allowed. For Tushetian Guda made from cow milk, after the draining and before moving it to the “Guda”, the cheese is placed for 24 hours in a wooden vessel (Dergi) for shaping. For mix Tushetian Guda: The wooden vessel (Dergi) is used if the texture of the cheese requires it.</td>
<td>Visual observation or Documented</td>
<td>Once a year for all producers, twice a year for 50% of the producers</td>
<td>At the beginning of the season and in the first week of August</td>
<td>Internal control - the association and/or external control: NFA or private</td>
</tr>
<tr>
<td>16</td>
<td>Identification</td>
<td>The wooden label indicating producer, production type and production date is present on each Guda</td>
<td>Visual observation or Documented</td>
<td>Twice per year, all producers</td>
<td>At the beginning and at the end of the season.</td>
<td>Internal control - the association; external control: NFA or private</td>
</tr>
</tbody>
</table>

Maturing stage

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Action</th>
<th>Frequency</th>
<th>Inspection</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Location of maturing unit</td>
<td>The maturing unit is located inside the delimited area.</td>
<td>Visual observation or Documented</td>
<td>Twice per year, all producers</td>
<td>At the beginning and at the end of the season.</td>
</tr>
<tr>
<td>18</td>
<td>Equipment for the maturing unit</td>
<td>Wooden shelves</td>
<td>Visual observation</td>
<td>???</td>
<td>???</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>length of Maturing period</td>
<td>The Guda is ripened during a period of minimum 60 days in dry and cool place.</td>
<td>Visual observation or Documented</td>
<td>Once per year, all producers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Maturing Temperature</td>
<td>The temperature must in no cases exceed 22°C.</td>
<td>Documented</td>
<td>Once per year, all producers</td>
</tr>
</tbody>
</table>

Transportation and storage

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Tusheti-Alvani</td>
<td>In Guda</td>
<td>Visual observation or Documented</td>
<td>Once per year, all producers</td>
</tr>
<tr>
<td>22</td>
<td>Storage in Alvani</td>
<td>????</td>
<td>Visual observation or Documented</td>
<td>Once per year, all producers</td>
</tr>
<tr>
<td>23</td>
<td>Storage temperature</td>
<td>????</td>
<td>Visual observation or Documented temperature control with thermometer</td>
<td></td>
</tr>
</tbody>
</table>

Packing

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Location of packing unit</td>
<td>????</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Packaging</td>
<td>????</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Final product

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Quality of final product</td>
<td>Conformity with regulatory characteristics for composition and quality of the final product.</td>
<td>Analysis and Organoleptic</td>
<td>Once per year, all producers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulguni#</td>
<td>Control Point</td>
<td>Description</td>
<td>Control Method</td>
<td>Control Frequency/coverage</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
<td>---------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Milk production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Farm Location</td>
<td>is located inside the delimited area</td>
<td>Documented – GPS data and / or registry data</td>
<td>Once per year - all producers</td>
</tr>
<tr>
<td>2</td>
<td>Number of cattle, including milking cows or buffaloes</td>
<td>Farm data base of registered animals</td>
<td>Visual observation / records</td>
<td>Once per year - all producers and second time 60% of the producers</td>
</tr>
<tr>
<td>3</td>
<td>Cow milking</td>
<td>Amount of produced milk</td>
<td>Visual observation / records</td>
<td>Once per year - all producers and second time 60% of the producers</td>
</tr>
<tr>
<td>4</td>
<td>Milk transportation</td>
<td>During milk transportation the following should be checked: milk temperature, the transportation means, time period from milking to delivery</td>
<td>Visual observation / Records</td>
<td>Once per year - all producers and second time 60% of the producers</td>
</tr>
<tr>
<td></td>
<td>First processing stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Milk reception at the enterprise</td>
<td>Record milk amount and identify (cow, buffalo)</td>
<td>Visual observation / Records</td>
<td>Once per year - all producers and second time 30% of the producers in Summer and 30% of the producers in winter</td>
</tr>
<tr>
<td>6</td>
<td>Milk</td>
<td>Sulguni is produced from 100% natural cow or buffalo milk or a mix of both milks</td>
<td>Records</td>
<td>Once per year - all producers and second time 30% of the producers in Summer and 30% of the producers in winter</td>
</tr>
<tr>
<td>No.</td>
<td>Control Point</td>
<td>Description</td>
<td>Control Method</td>
<td>Control Frequency/coverage</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Milk fermentation</td>
<td>The milk fermentation takes place at the temperature of 30-38°C</td>
<td>Visual observation / records - temperature control with thermometer</td>
<td>Once per year - all producers and second time 30% of the producers in Summer and 30% of the producers in winter</td>
</tr>
<tr>
<td>8</td>
<td>Cheese ripening</td>
<td>Cheese is left for ripening to 140-150°C, PH... (e.g. Sante and big companies)</td>
<td>Visual observation / records</td>
<td>For every processing</td>
</tr>
<tr>
<td>9</td>
<td>Making of Sulguni</td>
<td>The ripe cheese is cut manually into thin layers, is placed in water of 75-85°C and is stirred until it becomes uniformly stretching paste mass (use of wooden spoon is allowed). Then, it is separated from the lactoserum. The mass is cut into pieces that are then kneaded manually or by machinery until required structure and spherical shape are obtained.</td>
<td>Observation / records</td>
<td>Auto-control for each process; Internal control – 100%; External control – 100%</td>
</tr>
<tr>
<td>10</td>
<td>Shaping of Sulguni</td>
<td>Required structure and form is received – the mass is put in forms or given required form</td>
<td>Observation / records</td>
<td>Auto-control for each process; Internal control 100%; external control – 15%</td>
</tr>
<tr>
<td>11</td>
<td>Brine / salting</td>
<td>Cooled down and put in the brine, with concentration of 17-19%, at the temperature of 8-12°C</td>
<td>Observation / records; presence of thermometer in case of brine</td>
<td>Auto-control for each process; Internal control up to 2 times per year 60%; External control once a year – 50%</td>
</tr>
<tr>
<td>Sulguni#</td>
<td>Control Point</td>
<td>Description</td>
<td>Control Method</td>
<td>Control Frequency/coverage</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>or Cooled down with water and added salt on the cooled cheese.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Smoking of Sulguni</td>
<td>The ready Sulguni can be smoked in the smoking chambers by hot or cold smoking</td>
<td>Observation / records</td>
<td>Auto-control for each process; Internal control twice a year, 60%</td>
</tr>
<tr>
<td>13</td>
<td>Quality of final product</td>
<td>Based on specifications</td>
<td>Organoletic Analyses</td>
<td>Auto-control 100%; Internal control 100% producers</td>
</tr>
<tr>
<td>14</td>
<td>Fat content in Sulguni</td>
<td>30% for Sulguni made from cow milk 45% Sulguni made from buffalo milk 40% Sulguni made for mix milks</td>
<td>Laboratory analysis</td>
<td>Once a year all producers Once a year all samples tasted by evaluation committee</td>
</tr>
<tr>
<td></td>
<td>Packaging of Sulguni</td>
<td>Packaging shouldn’t affect Sulguni structure; the producer should use: - the official state logo of GI - Sulguni logos</td>
<td>Observation / records</td>
<td>100% packed products auto-control regularly Association twice - 60% of producers Control body – 50%</td>
</tr>
</tbody>
</table>

Final product
<table>
<thead>
<tr>
<th>Sulguni#</th>
<th>Control Point</th>
<th>Description</th>
<th>Control Method</th>
<th>Control Frequency/coverage</th>
<th>When to control</th>
<th>Who controls?</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Selling of Sulguni</td>
<td>Correlation between delivered milk at the enterprise and produced Sulguni</td>
<td>Observation / Records</td>
<td>Association once a year - 60% of producers Control body once a year– 50%</td>
<td>Annually</td>
<td>Association External Control</td>
</tr>
</tbody>
</table>